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Abstract – A quantitative study for the discrimination of 
different hepatic lesions is presented in this paper. The study is 
based on the fractal analysis of CT liver images in order to 
estimate their fractal dimension and to differentiate normal 
liver parenchyma from hepatocellular carcinoma. Four fractal 
dimension estimators have been implemented throughout this 
work; three well-established methods and a novel 
implementation of a method. Analytically, these methods 
correspond to the power spectrum method, the box counting 
method, the morphological fractal estimator and the novel 
modification of the kth-nearest neighbour method. The Fuzzy 
C-Means algorithm is finally applied revealing that the k-th 
nearest neighbour method outperforms the other methods; 
thus discriminating up to 93% of the normal parenchyma and 
up to 82% of the hepatocellular carcinoma, correctly.  
Keywords – Hepatic lesions, fractal dimension, Brownian 
motion, box-counting method, morphology, k-nearest 
neighbour method. 

 
I. INTRODUCTION 

 
Improvements of different medical imaging modalities, 

such as Computed Tomography (CT), Magnetic Resonance 
Imaging (MRI) and Ultrasonography have dramatically 
increased the ability to detect and diagnose                                                                                                                             
liver abnormalities. Nevertheless, biopsy, an invasive 
technique, remains the most effective for the 
characterisation of different liver abnormalities. To limit this 
process, new techniques from the image processing field 
may be applied to liver images in order to isolate regions of 
interest and detect liver abnormalities.  

Consequently, ultrasound B-scan imaging has become 
one of the most popular modality to image human 
abdominal organs such as liver. These images appear as 
textural ones and various techniques have been applied in 
order to characterise different tissues to normal or abnormal 
[1]. Recently, several investigators used MRI and CT in 
order to evaluate local hepatic lesion of all varieties [2].  

Detection of hepatic lesions, using the aforementioned 
imaging modalities, has been realised from the processing of 
liver images using different imaging processing techniques, 
such as texture analysis, grey-scale, shape descriptors, etc. 
[3]. In particular, texture features based on the Fourier 
power spectrum, the grey-level different statistics, the grey-
level run-length statistics, the spatial grey-level dependent 
matrices have been used for the liver tissue characterisation 
[4]. Most of these liver tissue differentiation techniques 
were based on the analysis of liver images with the 
emphasis on the problem of classification [4]. 

Moreover, fractal geometry has received much attention 
as a useful tool for image analysis [5]. The intensity surface 
of an image can be considered as a fractal object whose 
properties are quantified numerically by the use of the 
fractal dimension. For an image, the fractal dimension is a 
non-integer number between 2 and 3 and it is a measure of 
the roughness of its intensity surface. Experiments have 
demonstrated that the fractal dimension is highly correlated 
with the human perception of image texture; the rougher the 
texture appears the larger is the fractal dimension. 

The present paper consists of a comparative study of 
four fractal dimension estimators in order to discriminate 
different liver lesions. These fractal estimators correspond to 
three well-known techniques, such as the power spectrum 
method, the box counting, and the morphological fractal 
estimator and a novel modification of the kth-nearest 
neighbour method. These fractal dimension estimators have 
been implemented and applied to CT liver images to 
differentiate the following cases: normal parenchyma and 
hepatocellular carcinoma. 
 

II. METHODOLOGY 
 

The analysis presented in this study was performed in 
three main steps: (a) Data acquisition, (b) Image pre-
processing, and finally, (c) Estimation of the fractal 
dimension. 
 
A. Data Acquisition 

 
All CT images were captured using a Philips LX CT 

scanner of the Department of Radiology, at the Eugenidion 
Hospital - University of Athens, Greece. The scanner 
consists of a major system of a Local Area Network (LAN) 
and it is connected to an Agfa Impax MC-300 Medical 
Gateway, a system that digitises the CT images throughout 
the Video Spot Imaging (VSI) component. As a result, CT 
images of 512 x 512 pixels and 256 grey-level distributions 
were digitised and then driven to a Dicom server, according 
to the Agfa Protocol IP. Finally, the images were sent to a 
PC with Windows NT4.0 for further processing.  

In the present study, two sets of liver images were 
finally acquired corresponding to 99 normal parenchymas 
and 50 hepatocellular carcinomas. 
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B. Image Pre-processing  
 
The selected abdominal CT images were then processed 

in order to extract a particular region of interest (ROIs). 
These ROIs have been manually drawing by a team of 
radiologists so as to contain only liver parenchyma (normal 
or abnormal), with no major blood vessels information. The 
ROIs were selected along the centre line of each image and 
were consisted by rectangular areas from 2525×  up to 

8888×  pixels size, depending on the liver image.  
There were cases where ROIs are difficult to be 

discriminated from the surrounded liver tissues. Therefore, a 
contrast enhancement method, such as the histogram 
equalisation technique [6] was priory performed, in order 
the ROIs to be successfully identified by the experts. It must 
be pointed out that the calculation of the fractal dimension 
estimators were performed on the original data and the 
enhanced process had been used only for visualisation 
purposes.  
 
C. Fractal Dimension Estimators 
   

Several methods have been proposed for the estimation 
of the fractal dimension of liver images. In the present 
study, the fractal dimension of the various ROIs had been 
computed throughout four different estimators, regarded as 
the most representative: 

• The Power Spectrum Method (PSM), 
• The Box-Counting Method (BCM), 
• The Morphological Fractal Estimator (MFE), 
• The kth-Nearest Neighbour estimator (K-NN)  

 
The Power Spectrum Method (PSM) 

The power spectrum method belongs to the fractional 
Brownian motion (fBm) methods. The image is assumed to 
be fBm [7] with parameter: 

FDH −= 3                     (1) 
with 10 << H . Then, the power spectrum density of image 
is given by: 
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where k is a positive constant. The exponent b is related 
with the fractal dimension as follows: 

)4(222 FDHb −=+=     (3) 

where 42 ≤≤ b . Pentland [7] estimated the exponent b for 
various directions of the Fourier plane as the slope of the 
least squares line at the points ))f,logP(f,(-logf 21 . These 
estimates were then collapsed into one average 
measurement, from which the fractal dimension was 
obtained. 

The Box-Counting Method (BCM) 
The box-counting method estimates the fractal 

dimension of a signal (image) as an upper limit of the 
Hausdorff-Besicovich dimension [5]. The box-counting 
dimension of a set nRS ⊂  is defined as follows: 

FD ≡ 
)/1log(
)(loglim

0 r
rN
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      (4) 

where N(r) denotes the number of n-dimensional cubes, size 
r, needed to cover set S. The image plane ),( nm  is covered 
by a 3-dimensional grid of cubes for various grid sizes r. 
The number of cubes, N(r), containing at least one pixel of 
the image is counted and the fractal dimension is obtained 
by the slope of the best fitting line at the points 

))(log,log( rNr− . 
 

The Morphological Fractal Estimator (MFE) 
The morphological fractal estimator belongs to the area 

measurement methods [8]. The covering methods can 
measure the Minkowski-Bouligand fractal dimension of a 
fractal signal by creating multiscale covers round the 
signal’s graph. More precisely these methods are based on 
the multiscale morphological erosion and dilations. 
 

The dilation and erosion of a function f: 
[ ] [ ] ℜ→×= 21 ,0,0 XXD f by a structuring element gε: 

ℜ→
εgD are defined as follow: 
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f( ⊖ /),(),(inf{),)( 21221121 ssgsxsxfxxg −++=ε    
                                  }),(,),( 212211 εgf DssDsxsx ∈∈++  

where ⊕ denotes dilation and ⊖ erosion and fDxx ∈),( 21 .  
Let ),( 21 mmf be a two-dimensional signal where 

)1,...,1,0,1,...,1,0( 2211 −=−= MmMm . The fractal 
dimension is then estimated as follows: 
 STEP 1: Select a convex set structuring element Bd to be a 
discrete version of a continuous B which satisfies the 
theorem of [8] and for which the gε structuring elements are 
constructed.  
STEP 2: For max,...,2,1 εε =  the parameters 

),)((),( 2121 mmgfmmU εε ⊕= , 

fmmL (),( 21 =ε ⊖ ),)( 21 mmgε  
are recursively calculated: 
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STEP 3: Compute the parameter ( ))(εgAvol  according to 
the following equation:  
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STEP 4: The Minkowski - Bouligand dimension is obtained 
by the relation:  

α−= 3MBD                                          (6) 
where α is the slope of the best fitting line at the points 

( )( ))(ln,ln εε gAvol , for ε = 1,2,..., εmax. 
 
The kth-Nearest Neighbour estimator (K-NN)   

In a previous work [9], an algorithm for calculating the 
fractal dimension of grey level images using the kth-nearest 
neighbour approach was presented. In this work, a slightly 
modified method is applied for the estimation of the fractal 
dimension.  

In particular, let ( )yxI ,  denotes a grey level image with 
size yx NN ×  pixels, then the fractal dimension is estimated 
iteratively, using the following equation: 

( ) )(//~ γγγ D
k Nkr ><       (7) 

for maxmin ,, kkk K=  ( k  integer), where >< kr is the scaling 
of the average distance of a point to its kth nearest 
neighbour as a function of k , N the number of points, and 

( )γD  the dimension function. The fractal dimension is then 
estimated as follows: 
STEP 1: An initial value of γ , 5.20 =γ , is chosen 
arbitrarily.  
STEP 2: Each pixel of the image with spatial coordinates 
( )yx,  is considered as a point of 3R  with coordinates 

( )( )yxIyx ,,, . For each such point, which will be referred as 
a reference point, its mink  up to maxk  nearest neighbours are 
recorded as 

mkr  ( )Nm ,,2,1 K= , where yx NNN ×=  
denotes the total number of the pixels in the image.  
STEP 3: For K,2,1=n  the following recursive relations: 
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are applied until convergence is achieved. 1−ns  is the slope 
of the best fitting line (using linear regression) at the points 
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distance between two points is determined using the 
Euclidean norm. The process can be terminated when the 
fractional range between 1−nγ  and ( )nD γ , 
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, is smaller than some predefined 

tolerance (e.g., 510− ). 
 

III RESULTS 
 

The data used in the present study are composed of 
rectangular ROIs of: 

• Normal parenchyma: 99 ROIs. 
• Hepatocellular carcinomas: 50 ROIs. 

 
In Fig. 1, two typical CT liver images with or without 

hepatic lesions are presented. The rectangular areas 
correspond to the best fitting rectangular, within the ROIs, 
as drawn by the experts, where the fractal dimension is 
estimated using the aforementioned methods. 

 

  
(a) (b) 

 
Fig. 1. Typical transverse CT slices of (a) normal liver parenchyma 

and (b) hepatocellular carcinomas. The rectangular areas represent the ROIs 
under study. 

 
In Table I, the mean and the standard deviation values 

of the fractal dimensions, using the four aforementioned 
fractal dimension estimators, and for each hepatic case, are 
then presented.  
 

TABLE I 
THE MEAN AND THE STANDARD DEVIATION (IN PARENTHESIS) 

OF THE FRACTAL DIMENSIONS FOR ALL ROIs AND FOR EACH 
HEPATIC LESION. 

 
   PSM   BCM        MFE K-NN 

Normal 
2.25 (0.47)* 2.18 (0.09) 2.86 (0.06) 2.26 (0.07) 

Hepatocellular 
carcinomas 2.85 (0.17)* 2.14 (0.15) 2.86 (0.06) 2.04 (0.11) 
 
*The values (mean, standard deviation) of the fractal dimension for the 
PSM method were calculated for a substantial number of the original data 
(normal parenchyma: 57 and hepatic carcinoma: 46) since the method 
underestimates the estimation of the fractal dimension for most of the liver 
ROIs. 
 

For the estimation of the PSM, the range of the values 
of the parameter k, over which the slope of the best fitting 
line is computed, was [15,20]. Additionally, the ranges of 
the values of the parameter k used for the estimation of the 
BCM, MFE and K-NN were [7,19], [3,15] and [50,150], 
respectively. It must be pointed out that these ranges were 
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finally selected as the optimum ones in relation to the fractal 
dimensions estimated by the methods. 

From Table I, it can be observed that the K-NN may 
provide an indication of the type of the hepatic lesion under 
study, based on its fractal dimension. The values of the 
fractal dimension using the other two methods, BCM and 
MFE, are quite similar and they could not provide any 
information for the discrimination of these specific hepatic 
lesion. Nevertheless, the PSM method can not provide any 
discrimination between the two categories since the fractal 
dimensions obtained are above the value of 3; thus ROIs 
have been eliminated from the study. For these reasons, a 
discriminant analysis is then performed.  

Furthermore, a well-known algorithm namely the Fuzzy 
C-Means algorithm [10] was then applied for the clustering 
of the input data into two clusters. The FCM algorithm 
minimises the sum of squared distances to the prototypes 
weighted by constrained membership that can be interpreted 
as degrees of sharing. The function has two arguments. The 
first is a feature vector, which is formed by all the values of 
the fractal dimension, to be classified into two clusters. The 
number of clusters, which is the second argument, 
corresponds to the normal parenchyma and the 
hepatocellular carcinoma, respectively. It returns the cluster 
number for which the pattern vector has the highest grade. 
The FCM clustering for each hepatic lesion and for each 
fractal dimension estimator is then presented in Table II.  
 

TABLE II 
FCM CLUSTERING FOR EACH HEPATIC LESION AND FOR EACH 

FRACTAL DIMENSION ESTIMATOR 
BCM MFE K-NN  

 
Clusters Normal HCC Normal HCC  Normal HCC 

Cluster I 
48/99  17/50 72/99 37/50 92/99 9/50 

Cluster II 
51/99 33/50 27/99 13/50 7/99 41/50 

Success 
rate 

48.48% 66.00% 72.73% 26.00% 92.93%  82.00% 

 
From the results of the Table II, it is obvious that the k-

th nearest neighbour (K-NN) outperforms the BCM and the 
MFE methods. Specifically, the K-NN method discriminates 
almost 93% of the normal parenchyma (92 out of 99 normal 
parenchyma) and 82% of the hepatocellular carcinoma (41 
out of 50 hepatocellular carcinoma) correctly to the two 
clusters. Therefore, the K-NN method may be used to 
discriminate the normal parenchyma from the hepatocellular 
carcinoma using CT liver images 
 

 
V. CONCLUSION 

 
In this paper, a comparative study is performed to 

discriminate two different CT liver lesions: normal 
parenchyma and hepatocellular carcinoma. The fractal 
dimension of 99 ROIs of normal images and of 50 ROIs of 
hepatocellular carcinoma had been computed throughout 
four different estimators, regarded as the most 
representative: the Power Spectrum Method (PSM), the 

Box-Counting Method (BCM), the Morphological Fractal 
Estimator (MFE), and the kth-Nearest Neighbour estimator 
(K-NN), as a novel implemented method. The results of the 
discriminate analysis show that the K-NN could 
discriminate the two liver lesions more efficiently than the 
BCM and MFE methods. In particular, the PSM was proved 
to be insufficient for the current study, since underestimates 
the fractal dimension of most of the CT data. The success 
rate of discrimination with the K-NN method reached 93% 
for the normal parenchyma and 82% for the hepatocellular 
carcinoma. In the future, the proposed method might be used 
for the extensive analysis of other liver lesions or organs 
towards to the classification problem. 
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